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Shock structures present interesting dispersion characteristics when the radiative 
exchanges involve a large fraction of the total energy. If  a large part of the emitted 
radiation escapes upstream, highly cooled gases appear behind the shock and the final 
thermodynamic state of the medium is not overly tiected by the passage of even very 
strong shocks. A numerical technique was developed by Chapin for the analysis of 
such radiative flows and is described here. 

Recent interest in shortened mission times for deep space probes has motivated 
new studies of reentry phenomena at extremely high speeds (15 km/set and more). 
Typical examples have been discussed in a recent review [l]. Such reentry flows 
present two outstanding features: 

1. Because of the strong temperature dependence of radiation emission processes, 
the radiation-convection ratio tends to increase rapidly with velocity: radiation 
becomes the dominant transfer mechanism in the fluid mechanics of the flow across 
the shock layer. 

2. The high shock layer temperatures tend to produce a large number of high 
frequency photons which have enough energy to ionize the cold ground state 
atmospheric particles ahead of the shock. The resulting ionization zone is called an 
electron precursor or precursor. 

This note discusses these two effects as they come out of two recent studies 
carried out by Chapin [2] and Nelson [3] for normal one-dimensional shocks. In 
particular, a technique developed by the former author to avoid numerical diver- 

* Now at the Experimental Physics Department, Lawrence Radiation Laboratory, University 
of California. 

+ Now at the University of Missouri, Rolla, Missouri. 

455 

581/5/3-7 



456 CHAPIN, GGULARD, AND NELSON 

gence of shock wave structures of large radiationconvection ratios1 will be 
illustrated. 

RADIATING SHOCK STRUCT~JRIB 

Reviews of radiating shock structure analyses have been written [4], including in 
particular the classic papers of Heaslet-Baldwin [5] and Ferrari-Clarke [a]. 
Radiation plays the part of the dispersing mechanism of such shocks (Fig. 1). 
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FIG. 1. Radiation exchange across shocks. 

Heaslet-Baldwin’s calculations showed the role of the shock Mach number and 
the radiation-convection ratio for a perfect gray gas. Ferrari-Clarke extended the 
analysis to include both collisional and radiative rate processes, in a simplified 
atomic gas model with only one bound electronic state (this model includes, from 
the list on Fig. 2, the second collisional reaction and the first radiation transition 
only). This analysis included one additional mass conservation equation, where 
the electron species OL was controlled by collision and radiation processes. The 
paper brought out the characteristic zones of collision and radiation relaxation and 
their relative role for varying densities. 

Later, Chapin [2], followed by Nelson [3], improved further the model by 
allowing an excited state A* to exist alongside the ground state A. All the pro- 
cesses listed on Fig. 2 were included, except for the lir& transition hv, . Also the 
expected electron temperature T, lag behind the ion-atom temperature T, was 

I The radiationumvection ratio in normal shock waves is also known as the in~ene of the 
Boltanann Number Bo: Bo” = q&?&, where qo”, p, , and u, are typical radiation flux, 
density, and velocity of the 5ow. 

s The advantages and inconv~ of omitting line radihmfromsuchstudiesamdiacwxd 
in Ref. 1. 
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Rci. 2. Ionization processes. 

accounted for, through the inclusion of a separate energy equation for the electron 
gas. 

The system of coupled conservation equations to be solved now numbers five 
(Ref. 7, Eqs. l-5): mass, momentum, total energy, electron energy, and electron 
species. The five unknown parameters are the density p, the velocity U, the ion 
temperature T, , the electron temperature T, and the degree of ionization cx (i.e., 
the ratio of the number of electrons to the total number of particles). In non- 
dimensional form, these variables become: 

where the reference value (subscript 0) are usually determined from the classical 
Rank&-Hugoniot solution across the shock discontinuity. The solution of these 
equations is obtained in terms of the distance x from the shock discontinuity. 
Figures 3 to 5 illustrate some typical results. 

Figure 3 shows results obtained by retaining the Ferrari-Clarke model (T, = T,; 
no radiation escape since all photons have at least enough energy (&) to ionize 
the cold particles upstream). One recognizes the existence of a precursor ahead of 
the shock (LX > 0), followed by a region where the rate of increase of ionization to 
its equilibrium value is governed by the effects of collision and radiation rates 
simultaneously. Because true equilibrium is eventually reached, a Rankine- 
Hugoniot relationship exists between infinity upstream and Mnity downstream. 

Figure 4 shows the changes which occur when some of the electrons are allowed 
to recombine to an excited state A*: they release photons of smaller frequency 
(hu& which cannot ionize the cold gas since it consists almost exclusively of 
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FIG. 3. Shock wave with ground-state (trapped) contimmm radiation, T, = 7’. , p = 1 cm Hg. 
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FIG. 4. Shock wave with ground- and excited-state continuum radiation, T, # T, , p = 1 cm Hg. 
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FIG. 5. Shock wave with ground- and excited-state continuum radiation, T, # T., p = 0.2 cm Hg. 

particles in their ground state A, requiring photons of larger frequency (hi& for 
ionization (Fig. 2). Thus such small frequency photons are not absorbed and the 
value of (Y reached at the end of the collision ionization period (u,,) diminishes 
further downstream by about one half, due to these radiation losses (hv,) to infinity 
upstream. One notes also that the effect of slow electrons behind the shock 
(T, < TJ is to absorb rather than emit ground-state continuum radiation behind 
the shock, which effectively inhibits the precursor. 

Figure 5 presents a nearly identical case8 to the preceding one, except that the 
ambient pressure has been reduced by a factor of 5. As could be expected, the x 
scale of the processes has marquedly increased since both collisions and absorption 
are density dependent. Also, the radiation-convection ratio is much larger: 91.69 
instead of 23.03 (see Ref. 7, Table I). Consequently, radiation processes are likely 
to interact more strongly with the various energy states of the gas. In particular, 
this results in much more radiation cooling by electron recombination, as is shown 
by the low degree of ionization OL at the end of the process: less than a tenth of .the 
maximum value ar, . 

This last point is quite important in the sense that it gives support to Whitney- 
Skalafuris’ assumption [g] that shocks propagating through stellar atmospheres 

* In order to keep the same Mach number (M = 24) and upstream temperature (T = 3OO’K) 
at this reduced pressure, we introduced a change of shock velocity (from 6.58 x 1W to 7.23 x 1W 
CM=). 



460 CHAPIN, GOULARD, AND NIXSON 

(radiation-convection ratios of about IO3 or 104) are fairly transparent to their own 
longer wave radiation (e.g., Balmer continuum) and leave a relatively unheated 
thermodynamic state in their wake. 

MULTIPLYING FACTORS 

The analysis of large radiation-convection ratio cases presents an interesting 
problem of numerical nature, which was solved by Chapin (see pp. 71-80 of 
Ref. 2)’ 

In general, the iterative solution of a shock structure, for a given ambient state 
and shock velocity, begins with the assumption of a radiationless solution. The 
precursor which corresponds to the flux emitted by this particular shock structure 
can be then calculated in closed form with good approximation (the cool absorbing 
region can be modelled rather simply). The Rankine-Hugoniot conditions are then 
applied at the shock discontinuity and a marching downward process is then 
initiated from this point immediately behind the shock. At each step of this march, 
values from the preceding solution are used whenever downstream information 
is needed (such as, for instance, the flux received at this point from the layers 
downstream of it). This procedure eventually yields a first approximation to all the 
properties behind the shock. A new precursor is then calculated on this basis, and 
the process performed again until convergence of all profiles is obtained. 

In such a problem, the main difficulty comes from the fact that the photons 
absorbed at any point of the flow are contributed by the entire flow field. Therefore, 
if we start (1st approximation) with a radiationless solution where the ionization 
OL stays large behind the shock (no radiation cooling losses), the radiative flux 
calculated from this first approximation will likewise be very large. It will cause the 
gas to cool (on paper) much faster than expected in reality. The resulting overcooled 
solution (2nd approximation) will yield a very small radiation field on the next run 
and the computations will now yield a near equilibrium gas solution behind the 
shock (3rd approximation), since there is practically no radiation field. And so on... 
No solution is likely to emerge from this strongly oscillating sequence. 

As a means to avoid such oscillations, controllable multiplying factors were 
adopted for the sensitive excited state continuum flux terms QoM and eoM (i-e., the 
reduced flux QoM itself and the flux dependent function QbM which enters the 

’ During the presentation of this note to the Novosibirsk Congress, it was pointed out to the 
author that a similar method has been simultaneously and independently developed for the 
solution of detached shock layer flows in air (Ref. 9). As the instability inherent to the present 
application (downstream flow of infinite extent) appears to be more severe than in Ref. 9, both 
contributions should be considered complementary rather than redundant. RG. 
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expression for the rate of ionization). These arbitrary multiplying factors could be 
increased progressively by small fractions from xero to unity. 

In this fashion, the terms &*, and pbM, which control the radiative cooling and 
ionixation rate respectively, could be turned on carefully. The rate at which these 
multiplying factors could be increased toward unity in successive solutions is quite 
sensitive to the radiative-convection ratio, and therefore to the pressure in front of 
the shock. For low radiation-convection ratios and for high initial pressure, 
collisional processes dominate the radiative processes and the factors can be 
rapidly increased. (For instance; O., 0.1,0.3,0.6, 1.0). However, for high radiation- 
convection ratios and for low ambient pressures, radiative processes become more 
important relative to collisional processes and the factors must be increased very 
slowly. (For instance, by steps of 0.05 or less.) 

As an illustration, the successive steps in the solution of the 0.2-cm Hg pressure 
case (Fig. 5) are shown on Fig. 6. The logarithm of the degree of ionization in the 
radiation cooling region is shown. The degree of ionization is directly a&&d by 
the excited state radiation in the radiative cooling region. 
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FIG. 6. Multiplying factors as applied to the iterations leading to Fig. 5. 

The curve labeled 0.1 is the solution obtained with the QoM and QoM multiplying 
factor set to 0.1 using the radiationless solution as the previous solution. Curve 0.3 
was obtained when the factor was increased to 0.3. When the factor was increased 
to 0.5 the curve labeled A was obtained. This curve indicates that in this case the 
factor was increased much too fast: therefore, going back to the 0.3 solution, the 
factors QOM and FOX were increased successively from 0.3 to 0.5 in steps of 0.05 
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and each solution was averaged with the previous one. The factors were then held 
at 0.5 and convergence was reached resulting in the curve labeled (0.50).* The factors 
were then increased by steps of 0.05 until the value of 1.0 was reached, each time 
averaging with the previous solution. With the factors equal to one, convergence 
was rapidly reached resulting in the curve labeledfinal solution. 

CONCLUSION 

High radiation-convection shocks (low Boltzmann number) present high energy 
circulation features which result into extensive post shock cooling when most of 
the emitted radiation is of frequency lower than the ionization frequency of the 
gas upstream. A multiplying factor technique has been developed, which success- 
fully handles the numerical instabilities inherent to the large property transients 
across the shock. 
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